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SUMMARY

By introducing the oblate spheroidal system of generalized

coordinates into the solution of Laplace's equation, three adjust-

able constants are provided by which this solution can be made to

agree largely with the earth's potential expressed by means of a

general expansion in spherical harmonics. This agreement is

exact for the zeroth, first,and second zonal harmonics, and as a

consequence of this system, through more than half of the latest

accepted value of the earth's fourth harmonic. Based on this

theory of Vinti'ssolution by separable Hamiltonian, a computing

procedure is described for obtaining the coordinates and velocity

of an unretarded satellite from a knowledge of its initial

conditions.
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COMPUTATIONAL PROCEDURE FOR VINTI'S

THEORY OF AN ACCURATE INTERMEDIARY ORBIT

by

N. L. Bonavito

Goddard Space Flight Center

INTRODUCTION

Vinti (Reference 1) has found a gravitational potential for an axially symmetric

planet in oblate spheroidal coordinates which simultaneously satisfies Laplace's equation

and separates the Hamilton-Jacobi equation. This potential is given by the expression

- _zp
v(p,_) =

/0 2 + C2-r} 2

It accounts for all of the second zonal harmonic and for more than half of the fourth zonal

harmonic. This solution has been shown to fit the experimentally observed values of the

earth's gravitational potential within ± 0.2 parts per million. This succeeds in reducing

the problem of satellite motion to quadratures, with the use of a potential that is much

closer to the empirically accepted one for the earth than any previously used as the start-

ing point of a calculation. If we consider a 2n dimensional cartesian space formed of

coordinates ql'"q,, PI'"Pn' and known as phase space, the complete dynamic specifi-

cation of a mechanical system will be given by a point in such a space. The values of q

and p at any time t can be obtained from their initial values by a canonical transforma-

tion which is a continuous function of time, that is, there exists a canonical transforma-

tion from the values of the coordinates and momenta at any time t to their initial values.

Obtaining this transformation is equivalent to solving the problem of the system motion.

Accordingly, the motion of a mechanical system corresponds to the continuous evolution

or unfolding of a canonical transformation.

Vinti's solution by means of the canonical transformation for which both the momenta

and coordinates are constants of the motion =1 and /31 differs from others in that the

oblateness potential is included in the solution of the equations of motion. By use of one

half of the transformation equations relating the a's with the initial q and p values at the
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initial time, Vinti also evaluatestheseconstantsin terms of specl/icinitial conditionsof
theproblem.

A procedure for obtaining the constant _'s from initial conditions in Vlnti's kinetic

equations, representing the other half of the equations of transformation is included.

Elliptic integrals appearing in these latter equations have been replaced by rapidly

converging infinite series, and the inversion of the resulting kinetic equations then fur-

nishes the coordimtes q as functions of the initial conditions a l, 31, and the time.

A method for obtaining the velocity components from thls theory is also described.

!

Oo

STATEMENT OF THE PROBLEM

F
If we take the latest values given by W. M. KaulaJ# = G M = 398.6032 ± 0.0032

mm3/ksec 2 , where G iS the gravitational constant and ML is the mass of the earth,

KE = 6.37816.5 (± 0.00002S)n_, equal to the equatorial radius of the earth, and

= 1.08230 (± 0.2) x 10"3, equal to the coefficient of the second harmonic ], thenJ2

from the relation C2= ] 2
J

_ we have C = 0.209831 ram.

The relation between the oblate spheroidal and the geocentric rectangular coordinate

systems is given by the following equations from Reference 2:

x : i/(p= + ¢2)(z _ _2)¢o,_, (o<p<=) ;

= i//(p2 + c2) (1 +2),i. +, (-1 _-<+ =<1) ;

Z = P_7;

where p, 77, and _ are the coordinates in the oblate spheroidal system.

The Lagrangtan is defined as

1CdS_ 2
L = -_,_/ +

p 2 + C2T/2

where the curvilinear velocity is

t/ = ha + +
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P=l

!

the squares of the scale factors are

2 p2 + c2_2
h -

P p2 + c2

2 p2 + C2_2
h -

1 - ,?2

2_, = (__ + o_/(_ - _/,

and the generalized momenta are obtained from

bL

Pp = _--_ ,

_L

?L

P_ = -'_

It can be shown that ff L is not an explicit function of time, then the Hamiltonian H

is a constant of the motion. Furthermore, since the equations of transformation to the

(generalized) oblate coordinates do not depend explicitly on the time, and since the

potential is taken as velocity independent, then H is the total energy and is given by

+ - - =o,,
hp2\'_p] n \_rl] h_b2 p2 + c2_72

H

where W is Hamilton's characteristic function.

Using this, Vinti's dynamical equations of motion are seen to be (Reference 1)

1 1

1

p _! f_ _!

1

1 _0,( -1 -1-_(_ + _2) (_ 1 - _2) _(_)_d_¢- f13 = ;ca3
JPl

where F(p) and G(V) are the quartic polynomials and

_ : __ +(_- _) (_+ _1¢_.) .

' The Ms and/_'s are the Jacobi constants, with energy oa < 0.
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In the

=2

=3

_2

According

the initial

limiting case (c ---_0)of Keplerian motion, we have:

the totalenergy in the orbit;

the totalangular momentum;

the polar component of angular momentum;

the time of perigee passage;

the argument of perigee;

the right ascension of the ascending node.

to Reference 3, the values of %, =2, and =3 are determined rigorously from

coordinates and their derivatives, and are given by

1 2
=i :  -ui-  oi(p + c2  )-1,

a 3 : XiY i- YiXi ,

Here u_ denotes the speed.

A knowledge of these quantitiespermits a numerical solution of the qnartic

equation F(p) -- 0 and furnishes the numerical values of Pl, P2, A, and B necessary

to factor F(p) into the form

F(p) = -2= l(p - Pl)(P2 - P) (p2 - Ap + B)

where Pl : a(l - e) and P2 = a(1 + e) are zeros of F(p). The quantities A, B,

a,and e are given by Equations (3.19),(3.20),(3.23),and (3.24)of Reference 2.

Once mean values of the Jacobi constants =1, %, as, Px, /_2, and /33 are obtained

over many revolutions of an orbit, itthen becomes more advantageous to compute A and

B by Equations (4.12)and (4.13)of Reference 3 instead of (3.19)and (3.20),since the

Jacobi constants can now help factor the two quartics F(o) and G(_) exactly.

C
!
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THE VELOCITIES )(,9, AND

Ifwe are given the initialconditions as Xl, Yi, Zl, Xi, Yi,

time tl, we can write
2 2 2

ri2 = Xi + Yi + Zi '

fir i : XiX i + YiYi + ZiZ i •

and Zi for an initial
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Transforming to the oblate coordinates, we obtain

c2 4z}c 2
Pl = 2 1 + + ---- ,

(ri2 _ c2 ) 2

2Z} 2cZ i

_i = 1 + 1 + ,

r} - c 2 r} - c 2 / /

where the sign of vi is taken to be the same as that of Z 1. By differentiation, the

velocities are found to be

L

/_i - 2p i +

To define the uniformizing variables E, v, and ¢ given by Vinti as the "eccentric

anomaly", the "true anomaly", and a variable analogous to the argument of latitude,

respectively, at the initial time, the following procedure is employed:

From Reference 1 we have

Pp
/_ ---- = J:

2 h 2
hp p (p2 + c 2)

P

_ '7

h2

I/g(V)
+

h:(,_
PC a 3

-- -b --

he 2 h:

with a 3 _ 0 as the orbit is direct or retrograde.

Substituting Pl

= Vo sin ¢ into

= a(1 - e), P2 = a(1 + e), p = a(1 - e cos E), and

F(p) =-2a1( p - Pl)(P2 - P)(p2 + Ap + B)
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and

and replacing in the above expressions for 1/-F-(p) and I/-G(_),

± signs in favor of the uniformizing variables, since now, at t =

ace-2= 1 (p_ + Apl + B)

/Ji = sin El,

2(p c2 )hp i ? +

COS E i 1 - Pl)e_l
a

we can eliminate the

t i ,
!

co

c_0v/-2_1 (,f - ,_)
COS _i'

and

sin ffl =--
70

completely determine _i and Ei,

COS V i

and

sin v i

and v i is determined from the anomally connections

cos E i - e

1 - e cos E i '

1

(I - e2) ] sin Z i

1 - e cos E i

When e = 0, then vi = E i = 0.

If we now differentiate

x --_/(p2+ c2)(I- _) COS _,

and

y = _/(p2+ c2)(i-,2) sin _,

Z = p_
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with respect to time and substitute in the above results for _, _,

we have

i x
p2 + c2 1 - _2 h_

= Y p2 + C2 1 772 +---- h_

_=_+_.

7

and _ for any time t,

The Jacobi-Constantsp,,_2and _3

In addition to the uniformizing variables E i, vi, and _i, the geocentric right

ascension _i and the angle xl from Equation (6.51) of Reference 3 can be determined at

the initial time by the expressions

sin _i

Yi

cos _i

X i
=

sin Xi

)/I - _702 sin _i

_I - _02 sin 2 _i

and

cos Xi

cos _i

{I - n#'i"2+i



Assembling and substituting the above results in Vinti's kinetic equations [Equations

(8.2), (8.3), and (8.50) of Reference 3], the Jacobi constants are then solved for and are

given as

1

---- !I/Jl = (- 2al) 2 biEi + a(E i

+ c2(a22 -

1

--I_2 = - a2 I- 2al) 2 A2vi +

+ (4 -

- e sin Ei) + Air i + All sin v i + AI2 sin 2 vll

1 1 q2

o_)-__o_ [_,_, - _/_+e/,_o_ _, +_ _o__,]

A21 sin v i + A22 sin 2 v i + A23 sin 3 v i + A24 sin 4 vil

and

_ = _, - _(_

1 _ 1 1

41 _o I/_- _o_) _(,- _;_) _ + _ _,

] ++ 3-'2 3vi + A3n sin n v .

n=l

t i ,

!

oo
oo

COMPUTATIONAL PROCEDURE

All symbols used in the following paragraphs are consistent with References 1 and 3.

The following paragraphs give the steps of the computational procedure that is used

to produce motion of the satellite.

°

2.

3.

Coordinate Conversion and Jacobi Constants

(Generalized Momenta)

Enter the constants _ and c.

Enter the initial conditions (injection vectors) Xi, Yi, zl, xi, Yi and zi with t i.

Compute:

2 2 Z 2ri = Xi + Yi + i '

ri_ i = Xii i + YiYi + zig i ,
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d

p}-
r i2 - c 2

,z}c21c2)2

_14z c22Pl : 2 + + 212(,}-_

r} - C 2

-1

' + +_r}- o2/ ,

_i = vF_i2 ' where the sign of _i = slgn of Zi,

_7i = I ri_. i +

V(o2_,_)2+,c_z,_

Pi - f +

2Pi

COS _i _-

sin _i =

X i

Yi

then obtain _i within the limits o <_._i < 2,7,
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Xi + i ÷ i

% = xi_ i - r_
i

o_

Prime Constants

Compute:

2
X D = - 2_ 1 a22_z-2 t

,4,

Po = _ '
_z

po_ ,

2

2 = (cos2 j.0) = (ct3 / ,
YD \ _2/

4
YD '

2sin i 0 = I - YD '

sin 2 i 0 ,

c2

KO = -- ,

Oo
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co

K_,

^: -_Ko_oYo _ _ _o XD_- 3X_- 4 + 8_

1
b I = --A,2

I

b 2 = B 2 ,

IpXp2 = sp = P02 XD 2 I + K0Y D - 4 1

- Ko YD
4 20X_ 2XD - YD ':13- 16 + 32Y 2 + XD Y

Pl + P2 1a = _" ,

4PIP2

' - Ipl + P2) 2 '

2plP2

P-(Pt + P2) '

e : V1 - g ,
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q2 =

and

C_
I

O0

¢0

q4.

The terms _i and i o are now tested to insure that they fall within the following limits

<

-I _ -7)o < 771 -< T]o = I

and

ic < <= i0 = 180° - Ic ,

where I c = 1054 ',

NOTE: If a's and _'s are corrected by observations, then Equations (3.12) through

(3.15) of Reference 3 can be solved for (Pi + P2), PlP_, ^, and B, to arbitrarily

high order by a Newton-Raphson iterative scheme.

Mutual Constants

1. Compute:

!
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^, : (_ - °_)_,' ':'o _o-_ _ - °_/-_
n=2

13

nffi0

1

isapo,y°omia,ofdegroe(-_)',x:,andX.: (1-e2)_

2. Test

If m is an even integer, compute

Dm = D2i -- _, (-I) i-n '- P2.
nwO

If m is an odd integer, compute

D m : D2i+1

i 2i-2n

E _-'I'-°(_)
nmO

3. Then compute:

^3= (1- e_)_P-_O°_m._ (1-e2)2 ,
mr0

1 3 15 q4
BI = 2- + _q2 + 128
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q2 9 q4
B2 --- 1 + --_- + _-_ ,

7m - 22 m (m!) 2 22 n (n!) 2 '

n=1

!

I oo

B3 z I- (I - _2 -2) -'_ - _ "Ym 7"]2"2m

mm 2

1

All -- -_(I - p-3e + ,

1

(1-,_)_/e_.-_
AI2 -- 3--2

I I 9bib2 (1 + e2

1],+-_-b 2 (4 + 3e 2 p-4

1 ['e2/ 2 9 e2blb2p-3 3 4 (6e2 e4) p-4 1^==:(,_ ,=)=,-1iy_===_ _==),-=--8 +_ _= + '

1 e] 2 p-3 4

1

( 2) ,.,3 1 - e -i P-S b 2 ,
A24 - 256



o_
oD
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!

p-3 p

A34 -

1

321 I1- e212-P-S e4(-_b: + c21

1

2_I : I-2_ _ (a + b I + A 1 + c2_02 A2BIB;II -I

1

( )-'e' --- ae a + b I

the parameter e' is always less than e.

Jacobi-Constants (Generalized Coordinates)

If e = O, then v i = Ei : O.

If e _ O, then compute:

p2 + 7)2 c22

hpj. = p2 + c 2



16

2
h

p_ + _ e_
z

1 - _72

!

o_
Qo

sin E i

Pi h2 (Pl 2 + c2)Pl

oo,Ei=(,-©o-,,

now obtain E i within the limits 0 < Ei < 2_,

COS %bi =

_7i _i (1 - _?_)

_o _- 2_ (_ - _)

sin _i = -- '
_0

determine 9i within the limits 0 < _i < 2VT,

cos E i - e

COS V i = 1 - e cos E I '

sin v i : ( 1

I

_ e 2) 2 sin E i

i - e cos E i
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determine vi within the limits 0 < vi < 2_ ,

oO
cO

I

O

sin n v i for n = 2, 3, 4,

sin n _i for n = 2, 4,

sin Xi =

cos _i

COS Xi =

determine ×i within the limits o _< ×i < 2_ ,

q2 ]+ -_ sin 4 _i - ti '

-'-[ ]/32 = _ ct2 ( _ 2c_1 ) 2 A 2 v i + A21 sin v i + A22 sin 2 v i + ASS sin 3 v i + A24 sin 4 v i

1 [ q2 3q4 sin 4 _i ]

1

_( 1 1
_o _- _o_)-_(_-_-_)-__ +_ _,

] --[± 13 7)02_2_4 sin 2 _i + c2_3 (_2_1) 2 A3 vi + Ash sin n v i÷3--2
n.l
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Orbit Generator

Compute for any time t :

M, = 2_ _'1 I t + /31 - c2 /_2 _217702BIB2-11 '

[ -]_l = 2_ '72 t + /_1 + /_2 a2 -1 (a + b I + A1)A2 1 ,

I

co
co

Also, determine M, and _, within 2.,

By the Newton-Raphson iteration:

[_n - e' sin _n - MI]

-- _n,l = _n - (1 - e' cos _n)

I

-2- 1 - e' cos _. 1 - e' cos _;n

where _n = M, initially,

Note, all subsequent secular terms of the generator are non-modulo,

:o,_. : (oo,_- o)(_- ooo,_)-' .

1

.inv, : (,- e_)_(, - eoo._)-'.in_,

also, determine v' within the limits 0 < v' < 217,

v 0 = v' - M_,
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I 1

v 0 ,

v-4
I

M 1 = (a + bl) -I [-(,,+o__o_^__,_;')_o

C2 I 1 1+T (-_,)_(°_-°_)-__o_"°(__.+__oI,

[ ] "'[ ] ;E 1 = 1 - e' cos B -1 M1 _ 2- 1 - e' cos B -3 M sin B ,

[< > ][ < >]-'cos v" = cos _ + E 1 - e 1 - e cos _ + E l ,

1

[ / _]-',,,,(_ + E,),

also, determine v" within the limits 0 < v" < 2%

vz = v" -(v o + M,) = (v" - v') ,

I 1

_[ ]

+_ B2 z sin ) ,

( )-'{M s = - a + b I A 1 v I + A11 sin v a + A12 sin 2 v'
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q_ ,2 >I)-_-sJoI2@.+ 2@o)+-_sioI,_.÷__o ,

I c _j-'E2 = ] - e' cos _ + EI

E : (_ + E 1 + E2) ,

M 2 ,

!
_=a
o0
co

I < I IL _ _I-'cos v"'= cos g + E I + E 2 - e 1 - e cos g + E 1 + E 2 ,

1

sinC_+E,+"2),

also, determine v" within the limits 0 -< v" < 2_,

v2 = v'" - (vo + m, + vl) = (v" - v") ,
0

1 1

-I_b2 = (_2_1)-2 (%2 _ %2)_ WO 1 B2 I A2 v2 +A21 vI cos v' + 2 A22 vI cos 2 v'

} q2 - I C2 _bs + 2 @0)+A23 sin 3 v' + A24 sin 4 v* + -4 B2 I @I cos

3 q2 sin (2@_ + 2 @O)+_ 64

v -- M s + Vo + Vl + v2 ,

¢': @_ + @o + @I + @2,
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put v and _b within 2n and into proper quadrant,

_1- _o2 _i_
sin X =

_i - _o_ _in_

COS
COS )_ --

i - _o_ _i._

also, determine × within the limits 0 < x < 217,

p = (I + e cos v) -I p ,

?7 = _)0 sin _ ,

1 1 1

3+-_Vo 2_2-4 si. 2¢ ± t-o2_3(-_1) 2 ^3v+ ^_°si°nv ,
nsl

the parameters p and v should satisfy the following conditions

0 __ p < oD

-I_v_+I,

also put ¢ within 2vr and into its proper quadrant,

h2 _ p2 + W2c2

P p2 + c 2

h 2 p2 + ?)2c2

v 1 - _32 '
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2 = + (1 - ,

p ,o 2 + c

f_
I

i-t
Oo

X = /(p2 + c 2) (1 - 7721 cos _,

I 2/ X" "3

: _, p_ _ +
/0 2 + c 2 I - _ h_ 2

and
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REMARKS

The programming of this procedure is presently being handled by the IBM Space Sys-

tems Center, Bethesda, Maryland. On the matter of improvement programs, it should be

said that the author is presently working on an orbit correction routine, unique to this

system, in that mean-corrected values of the total set of Jacobi-constants are to be ob-

tained for the epoch of an arc of observations and used for prediction purposes.

It is intended that this program will include work being done on the effects of the re-

sidual fourth harmonic, the odd harmonics, the tesseral harmonics, lunar-solar forces,

and aerodynamic and electromagnetic drag. In this respect, it can be stated that even

though it is now possible to do the gravitational theory of a satellite orbit very accurately

without use of perturbation theory, Izsak (Reference 4) has stated that the oblateness per-

turbations unaccounted for by Vinti's potential can be treated by a first order method, that

is, without multiplications of Fourier series.

This method shows great promise from the standpoint of computer operations in that

it requires a relatively small number of storage locations throughout the entire computing

procedure.

Presently, this procedure is being tested with two well-behaved and accurate, high

earth satellite orbits: Gamma Ray Astronomy Satellite (1961v) and Vanguard I (1958/3).

Preliminary tests on the IBM 7090 indicate that the orbit generator can compute approxi-

mately 1440 minute points (time, x, y, z, £, 9, and _ each minute for 1440 minutes) in 54

seconds of computer operation with simultaneous production of BCD tape output.
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